Staring at \$\epsilon^2=0\$

$$
\begin{aligned}
& \mathrm{am}_{i_{-}, j_{-}->k_{-}}:=\mathbb{E}\left[\left(\alpha_{i}+\alpha_{j}\right) \mathrm{a}_{k},\left(\mathbb{e}^{-\alpha_{j}} \xi_{i}+\xi_{j}\right) \mathrm{x}_{k}, 1+0[\epsilon]^{2}\right] \\
& \mathrm{a} \Delta_{i_{-}->j_{-}, k_{-}}:=\mathbb{E}\left[\alpha_{i}\left(\mathrm{a}_{j}+\mathrm{a}_{k}\right), \xi_{i}\left(\mathrm{x}_{j}+\mathrm{x}_{k}\right),\right. \\
& \left.1+\epsilon \xi_{i} \mathbf{x}_{k}\left(-\mathrm{a}_{j}+\xi_{i} \mathbf{x}_{j} / 2\right)+0[\epsilon]^{2}\right] \\
& \mathrm{aS}_{i_{-}}:=\mathbb{E}\left[-\alpha_{i} \mathrm{a}_{i},-\mathbb{e}^{\alpha_{i}} \xi_{i} \mathbf{x}_{i},\right. \\
& \left.1-\epsilon \mathbb{e}^{\alpha_{i}} \xi_{i} \mathbf{x}_{i}\left(\mathrm{a}_{i}+\mathbb{e}^{\alpha_{i}} \xi_{i} \mathbf{x}_{i} / 2\right)+0[\epsilon]^{2}\right] \\
& \mathbf{a S i}_{i_{-}}:=\mathbb{E}\left[-\alpha_{i} \mathrm{a}_{i},-\mathbb{e}^{\alpha_{i}} \xi_{i} \mathbf{x}_{i},\right. \\
& \left.1-\epsilon \mathbb{e}^{\alpha_{i}} \xi_{i} \mathbf{x}_{i}\left(\mathrm{a}_{i}-1+\mathbb{e}^{\alpha_{i}} \xi_{i} \mathbf{x}_{i} / 2\right)+0[\epsilon]^{2}\right]
\end{aligned}
$$

$$
\mathrm{bm}_{i_{-}, j_{-} \rightarrow k_{-}}:=\mathbb{E}\left[\left(\beta_{i}+\beta_{j}\right) \mathbf{b}_{k},\left(\eta_{i}+\eta_{j}\right) \mathbf{y}_{k}, \mathbf{1 - \epsilon} \eta_{j} \mathbf{y}_{k} \beta_{i}+0[\epsilon]^{2}\right]
$$

$$
\mathbf{b} \Delta_{i_{-}->j_{-}, k_{-}}:=\mathbb{E}\left[\beta_{i}\left(\mathbf{b}_{j}+\mathbf{b}_{k}\right), \eta_{i}\left(\mathbf{e}^{-b_{k}} \mathbf{y}_{j}+\mathbf{y}_{k}\right),\right.
$$

$$
\left.1+\epsilon \eta_{i}^{2} y_{j} y_{k} e^{-b_{k}} / 2+0[\epsilon]^{2}\right]
$$

$$
\mathbf{b S}_{i_{-}}:=\mathbb{E}\left[-\beta_{i} \mathbf{b}_{i},-\mathbb{e}^{b_{i}} \eta_{i} \mathbf{y}_{i}\right.
$$

$$
\left.\overline{1}-\epsilon e^{b_{i}} \eta_{i} y_{i}\left(\beta_{i}+e^{b_{i}} \eta_{i} y_{i} / 2\right)+0[\epsilon]^{2}\right]
$$

$$
\mathrm{bSi}_{i_{-}}:=\mathbb{E}\left[-\beta_{i} \mathbf{b}_{i},-\mathbb{e}^{\mathrm{b}_{i}} \eta_{i} \mathbf{y}_{i}\right.
$$

$$
\left.1-\epsilon e^{b_{i}} \eta_{i} y_{i}\left(\beta_{i}-1+e^{b_{i}} \eta_{i} y_{i} / 2\right)+0[\epsilon]^{2}\right]
$$

$$
\mathbf{t} \mathbf{P}_{i_{-}, j_{-}}:=\mathbb{E}\left[\beta_{i} \alpha_{j}, \eta_{i} \xi_{j}, \mathbf{1}+\epsilon \eta_{i}^{2} \xi_{j}^{2} / \mathbf{4}\right]
$$

$$
\mathbf{R}_{i_{-}, j_{-}}:=\mathbb{E}\left[\mathbf{b}_{i} \mathbf{a}_{j}, \mathbf{y}_{i} \mathbf{x}_{j}, \mathbf{1}-\epsilon \mathbf{y}_{i}^{2} \mathbf{x}_{j}^{2} / \mathbf{4}+\mathbf{0}[\epsilon]^{2}\right]
$$

